Environment-sensitive behavior of fluorescent molecular rotors

نویسندگان

  • Mark A Haidekker
  • Emmanuel A Theodorakis
چکیده

Molecular rotors are a group of fluorescent molecules that form twisted intramolecular charge transfer (TICT) states upon photoexcitation. When intramolecular twisting occurs, the molecular rotor returns to the ground state either by emission of a red-shifted emission band or by nonradiative relaxation. The emission properties are strongly solvent-dependent, and the solvent viscosity is the primary determinant of the fluorescent quantum yield from the planar (non-twisted) conformation. This viscosity-sensitive behavior gives rise to applications in, for example, fluid mechanics, polymer chemistry, cell physiology, and the food sciences. However, the relationship between bulk viscosity and the molecular-scale interaction of a molecular rotor with its environment are not fully understood. This review presents the pertinent theories of the rotor-solvent interaction on the molecular level and how this interaction leads to the viscosity-sensitive behavior. Furthermore, current applications of molecular rotors as microviscosity sensors are reviewed, and engineering aspects are presented on how measurement accuracy and precision can be improved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polymerase synthesis of DNA labelled with benzylidene cyanoacetamide-based fluorescent molecular rotors: fluorescent light-up probes for DNA-binding proteins.

Viscosity-sensitive fluorophores, fluorescent molecular rotors based on aminobenzylidene-cyanoacetamide moiety, were tethered to 2'-deoxycytidine triphosphate via a propargylamine linker and incorporated into DNA by polymerases in primer extension, nicking enzyme amplification or PCR. DNA probes incorporating modified nucleosides show a light-up response upon binding to a protein.

متن کامل

Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes.

Fluorescent molecular rotors belong to a group of twisted intramolecular charge transfer complexes (TICT) whose photophysical characteristics depend on their environment. In this study, the influence of solvent polarity and viscosity on several representative TICT compounds (three Coumarin derivatives, 4,4-dimethylaminobenzonitrile DMABN, 9-(dicyanovinyl)-julolidine DCVJ), was examined. While s...

متن کامل

Di- and tri-oxalkyl derivatives of a boron dipyrromethene (BODIPY) rotor dye in lipid bilayers.

The environment-sensitive fluorescent probes provide excellent tools for studying membranes in their native state. We have modified the BODIPY-based fluorescent molecular rotor by increasing the number of alkyl moieties from one to two or three to achieve a more defined and deeper positioning of the probe in membranes. Detailed characterisation of fluorescence properties and localisation/orient...

متن کامل

Tuning BODIPY molecular rotors into the red: sensitivity to viscosity vs. temperature

Viscosity variations in the microscopic world are of paramount importance for diffusion and reactions. In the last decade a new class of fluorescent probes for measuring viscosity has emerged termed ‘molecular rotors’, which allows quantitative mapping of viscosity in microscopically heterogeneous environments. Here we attempt to tune the absorption and emission of one such ‘molecular rotor’ ba...

متن کامل

Cyclopenta[b]naphthalene cyanoacrylate dyes: synthesis and evaluation as fluorescent molecular rotors.

We describe the design, synthesis and fluorescent profile of a family of environment-sensitive dyes in which a dimethylamino (donor) group is conjugated to a cyanoacrylate (acceptor) unit via a cyclopenta[b]naphthalene ring system. This assembly satisfies the typical D-π-A motif of a fluorescent molecular rotor and exhibits solvatochromic and viscosity-sensitive fluorescence emission. The centr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010